# Sim-SEQ Work in 2010-2013

## Approach

- Participating modeling groups performed simulation analysis of selected field tests, including SECARB (Cranfield) and SWP (Aneth)
- Using the similar site characterization data, modeling groups used different conceptual approaches and numerical simulators
- Results werecompared with monitoring data and among different modeling groups
- For SWP, the resulting outcome at Aneth illustrated that microseismic events could be used to elucidate previously unobserved geologic structures (small fault zones);
- Also, we determined that brine injection, not CO<sub>2</sub> injection, was responsible for detected microevents (magnitudes < 1)</li>

#### SWP Research Facilitated via NRAP since 2013

• "Revisit" of SACROC Phase 2 project and forecasts of storage at that EOR site

Jia, W., McPherson, B., Pan, F., Xiao, T., Bromhal, G. (2016). Probabilistic Analysis of CO<sub>2</sub> Storage Mechanisms in a CO<sub>2</sub>-EOR Field Using Polynomial Chaos Expansion. *International Journal of Greenhouse Gas Control*, 51, 218-229

This paper focused specifically on development of Reduced Order Models to quantify uncertainty of storage estimates forecasted for that project, which concluded in 2010.

## SWP Research Facilitated via NRAP

- Quantification of uncertainty of forecasts of CO2 storage, reservoir pressure and oil production as a function of multiphase flow parameters (relative permeability, (to be discussed tomorrow morning at 8 am)
- Pan, F., McPherson, B., Dai, Z., Jia, W., Lee, S., Ampomah, W., Viswanathan, H. (2016). Uncertainty Analysis of Carbon Sequestration in an Active CO<sub>2</sub>-EOR Field. *International Journal of Greenhouse Gas Control*, 51, 18-28.

This study focused exclusively on making sense of uncertainty stemming from multiphase flow parameters in a CO2-EOR operation.

## SWP Research Facilitated via NRAP

- Evaluation of potential USDW impacts specifically, assessment of risks to the Ogallala aquifer above the SWP Farnsworth Unit Phase 3 project (to be discussed tomorrow morning at 8 am)
- Xiao, T., McPherson, B., Pan, F., Esser, R., Jia, W. (2016). Potential Chemical Impacts of CO<sub>2</sub> Leakage on Underground Source of Drinking Water (USDWs) Assessed by Quantitative Risk Analysis. *International Journal of Greenhouse Gas Control*, 50, 305-316.

This study focused on development of ROMs calibrated with traditional reactive transport models. We subsequently examined potential aquifer impacts using NRAP's AIM tool.

#### **Probabilistic Analyses Using NRAP's AIM Tool**



## **Probabilistic Analyses Using NRAP's AIM Tool**



| Cumu | lative CO2 mass leaked |
|------|------------------------|
|      | < 381.0 kTon           |
|      | 381.0 - 762.0 kTon     |
|      | > 702.0 Kion           |

Cumulative distribution function of impacts on aquifer (pH, TDS, As, and Cd) due to three levels of leakage

| Analyte                      | U.S. EPA<br>Regulatory<br>Standard |
|------------------------------|------------------------------------|
|                              | MCL Threshold                      |
| рН                           | 6.5                                |
| Total<br>Dissolved<br>Solids | 500 mg L <sup>-1</sup>             |
| Arsenic                      | 10 μg L <sup>-1</sup>              |
| Cadmium                      | 5 μg L <sup>-1</sup>               |
| Lead                         | 15 μg L <sup>-1</sup>              |